Negative poisson's ratio in single-layer black phosphorus.
نویسندگان
چکیده
The Poisson's ratio is a fundamental mechanical property that relates the resulting lateral strain to applied axial strain. Although this value can theoretically be negative, it is positive for nearly all materials, though negative values have been observed in so-called auxetic structures. However, nearly all auxetic materials are bulk materials whose microstructure has been specifically engineered to generate a negative Poisson's ratio. Here we report using first-principles calculations the existence of a negative Poisson's ratio in a single-layer, two-dimensional material, black phosphorus. In contrast to engineered bulk auxetics, this behaviour is intrinsic for single-layer black phosphorus, and originates from its puckered structure, where the pucker can be regarded as a re-entrant structure that is comprised of two coupled orthogonal hinges. As a result of this atomic structure, a negative Poisson's ratio is observed in the out-of-plane direction under uniaxial deformation in the direction parallel to the pucker.
منابع مشابه
A Stillinger-Weber potential for single-layered black phosphorus, and the importance of cross-pucker interactions for a negative Poisson's ratio and edge stress-induced bending.
The distinguishing structural feature of single-layered black phosphorus is its puckered structure, which leads to many novel physical properties. In this work, we first present a new parameterization of the Stillinger-Weber potential for single-layered black phosphorus. In doing so, we reveal the importance of a cross-pucker interaction term in capturing its unique mechanical properties, such ...
متن کاملAuxetic Black Phosphorus: A 2D Material with Negative Poisson's Ratio.
The Poisson's ratio of a material characterizes its response to uniaxial strain. Materials normally possess a positive Poisson's ratio - they contract laterally when stretched, and expand laterally when compressed. A negative Poisson's ratio is theoretically permissible but has not, with few exceptions of man-made bulk structures, been experimentally observed in any natural materials. Here, we ...
متن کاملThermal conduction in single-layer black phosphorus: highly anisotropic?
The single-layer black phosphorus is characteristic for its puckered structure, which has led to distinct anisotropy in its optical, electronic, and mechanical properties. We use the non-equilibrium Green's function approach and the first-principles method to investigate the thermal conductance for single-layer black phosphorus in the ballistic transport regime, in which the phonon-phonon scatt...
متن کاملNegative In-Plane Poisson’s Ratio for Single Layer Black Phosphorus: An Atomistic Simulation Study
We utilized molecular statics (MS) simulations to investigate the auxeticity of single layer black phosphorus (SLBP). Our simulation results show that the SLBP has a negative in-plane Poisson’s ratio in the zigzag direction when the applied strain along the armchair direction exceeds 0.018. We show that the interplay between bond stretching and bond rotating modes determines the in-plane Poisso...
متن کاملNegative Poisson's Ratio in Single-Layer Graphene Ribbons.
The Poisson's ratio characterizes the resultant strain in the lateral direction for a material under longitudinal deformation. Though negative Poisson's ratios (NPR) are theoretically possible within continuum elasticity, they are most frequently observed in engineered materials and structures, as they are not intrinsic to many materials. In this work, we report NPR in single-layer graphene rib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature communications
دوره 5 شماره
صفحات -
تاریخ انتشار 2014